Jhe Excellence Key...

CODE:1002-AG-3-FC-23-24

MATHEN

पजियन क्रमांक

by

REG.NO:-TMC -D/79/89/36

(M.Sc, B.Ed., M.Phill, P.hd)

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is

compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-

parts of the values of 1, 1 and 2 marks each respectively

7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2

Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has

been provided in the 2marks questions of Section E

8.Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

EXAMINATION 2023 - 24

Time	Time : 3 Hours Maximum Marks					
CLAS	CLASS – IX MATHEMA					
Sr.	SECTION - A					
No.	This section comprises of very short answer type-questions (VSA) of 1 marks each					
Q.1	Factors of $(a + b)^3$ - $(a - b)^3$ is :	1				
	(A) $2ab(3a^2 + b^2)(B) ab(3a^2 + b^2)$ (C) $2b(3a^2 + b^2)$ (D) $3a^2 + b^2$					
Q.2	The two diagonals are equal in a	1				
	(a) parallelogram (b) rhombus (c) rectangle (d) trapezium					
Q.3	If $\frac{3+\sqrt{7}}{3-\sqrt{7}} = a + b\sqrt{7}$ then $(a,b) =$	1				
	(A) $(8, -3)$ (B) $(-8, -3)$ (C) $(-8, 3)$ (D) $(8, 3)$					
Q.4	If $(2k-1, k)$ is a solution of the equation $10x-9y = 12$ then k =	1				
TMC	T/D/79/89 1 P.T.O.	1				

TMC/D/79/89

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony Ph.: 4063585(O), 7000636110(O) Mobile: 9425109601(P)

	Visit us at www.agyatgupta.com								
	(a) 1	(b) 2	(c) 3	(d) 4					
Q.5	The value of 0.	4 23 is :-			1				
	(A) $\frac{423}{1000}$	(B) $\frac{479}{1000}$	(C) $\frac{423}{990}$	(D) ⁴¹⁹ / ₉₉₀					
Q.6	The volume of a	cube with surface	e area 384 sq. cm, is	:	1				
	(a) 216 cm ³	(b) 512 cm^3	(c) 484 cm ³	(d) NONE					
Q.7	<u> </u>	A			1				
	(
	Ŕ	L $(4x+12)^{\circ}$ (
		(2x+24)	0						
	R	M	S						
	In Fig	В	. If transversal A	AB cuts parallel lines PO and					
	RS and L and M	respectively. The	n, then the value of	x is:					
	(a) 20°	(b) 24°	(c) 30°	(d) 34°					
	In Fig A	B If $\angle OAB =$	40° then $\angle ACR$ is	equal to	1				
	(a) 50°	(b) 40°	(c) 60°	(d) 70°					
Q.9	The Autorikshaw fare in a city is charged @ Rs. 10 for the first kilometer and @ Rs. 4 per kilometer for subsequent distance covered. Taking the distance covered as x km and total fare as Rs y, write a linear equation for this information, The linear equation to express the statement is								
	(a) $y = 4x + 10$	(b) $y = 4x + 6$	(c) $y + 4x = 10$	(d) y + 4x = 6					
Q.10	The solution of the (a) $(0, 3)$	the linear equation (b) (2, 0)	3x+2y=6 which reg (c) (4, -3)	presents a point on y-axis is : (d) None of these	1				
Q.11	If a hemi-spheric	cal dome has an in	ner diameter of 28 i	m, then its volume (in m^3) is :	1				
	(a) 6186.60	(b) 5749.33	(c) 7099.33	(d) 7459.33					
Q.12	If an angle of a pa parallelogram is	rallelogram is two	thirds of its adjacent a	angle, the smallest angle of	1				
	(a) 108°	(b) 72°	(c)	54° (d) 81°					
Q.13	The equation $x - (x) = 1$	2 = 0 on number 1	ine is represented b	y	1				
	(a) a line	(b) a poi	nt (c) infinitely ma	any lines (a) two lines					

2 P.T.O. **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com								
Q.14	The area of right triangle is 28cm ² .if one of its perpendicular sides exceeds the	1						
	other by 10cm, then the length of the longest of the perpendicular is							
	(a) 16cm (b) 14cm (c) $6\sqrt{5}$ cm (d) 18cm							
Q.15	The graph of $y = 6$ is a line	1						
	(a) parallel to x-axis at a distance 6 units from the origin.							
	(b) parallel to y-axis at a distance 6 units from the origin.							
	(c) making an intercept 6 on the x-axis.							
	(d) making on intercept 6 on both the axes.							
Q.16	The solution of the linear equation $x + 2y = 8$ which represents a point on x-axis, is	1						
	(a) $(4, 0)$ (b) $(0, 4)$ (c) $(8, 0)$ (d) $(4, 2)$	-						
Q.17	The value of p for which the polynomial $x^3 + 4x^2 - px + 8$ is exactly divisible by	1						
	(x-2) is							
	(A) 0 (B) 3 (C) 5 (D) 16							
Q.18	Class mark of a class is obtained by using	1						
	(A) (upper limit - lower limit) / 2 (B) (upper limit + lower limit) / 2							
	(C) upper limit - lower limit (D) Upper limit + lower limit							
	ASSERTION-REASON BASED QUESTIONS							
	In the following questions, a statement of assertion (A) is followed by a statement of							
	Reason (R). Choose the correct answer out of the following choices. (a) Both A and R are							
	true and R is the correct explanation of A. (b) Both A and R are true but R is not the correct explanation of A. (c) A is true but P is false (d) A is false but P is true.							
0.10	correct explanation of A. (c) A is true but K is faise. (d) A is faise but K is true.							
Q.19	Statement-1 (Assertion): In a $\triangle ABC$, the disector of $\angle B$ and $\angle C$ meet a point O and the bisector of evt $\angle B$ and evt $\angle C$ meet a point O'. If $\angle BOC = 125^\circ$, then							
	$\angle BO'C = 45^{\circ}$							
	Statement-2 (Reason) : In a $\triangle ABC$, if the bisector of $\angle B$ and $\angle C$ meet a point O							
	and the bisector of ext $/B$ and ext $/C$ meet at a point O' Then $/BOC$ and $/BO'C$							
	are supplementary.							
Q.20	Statement-1 (Assertion) : The altitude p of an equilateral triangle having each side a	1						
	is given by $\mathbf{p} = a\sqrt{3}$	1						
	$\frac{1}{2}$							
	Statement-2 (Reason) : Area of equilateral triangle with each side a is $\frac{\sqrt{3}(a)^2}{a}$.							
	4							
	SECTION – B							
	This section comprises of very short answer type-questions (VSA) of 2 marks each							
Q.21	Divide the polynomial $3x^4 - 4x^3 - 3x - 1$ by $(x - 1)$.	2						
Q.22	The heights of 50 students, measured to the nearest centimetres, have been found to	2						
	161 150 154 165 168 161 154 162 150 151 162 164 171							
	165							
L		I						

3

P.T.O.

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com														
	158	154	156	172	160	170	153	159	161	170	162	165	166	
			168											
	165	164	154	152	153	156	158	162	160	161	173	166	161	
	1.60		159											
	162	167	168	159	158	153	154	159		1.	•1 .•	. 1 1	. 1 •	
	(1) Rep	oresei	nt the o	data gr	165	ove by $165 1$	a grou	iped fr	equen	cy dist	ributio	n table	, taking	
	the cla	iss in	tervals	as 100)-103, da aha	105 - 1 ut thai	/U, etc	ta fran	n tha t	ah1a9				
0.22			n you		$\frac{1}{1}$ ·				II the t	able				
Q.23	I ne ar	igle i	n a ser	ni-circ	le 1s a i	right a	ngle	•						2
Q.24	A hem	isphe	erical o	lome o	f a bui	lding 1	needs t	o be pa	ainted	(see F	ig.			2
	0													
	/													
			55											
			1											
					he circ	nimfer	ence o	f the h	ase of	the do	me is 1	7.6 m	find	
	the cos	stofi	paintin	j, m ig it, gi	ven th	e cost	of pair	ting is	Rs5t	per 10	0 cm^2 .	7.0 III	, iiiid	
		50 01]	pulliuni	5 10, 51	v en un		or puil	11115 15	10001		•••••••			
	At a D			a a ata	11 1			the fee	d ata 11	a h a a a	1			
	At a Kamzan Mela, a stall keeper in one of the food stalls has a large cylindrical													
	vesser of base radius 15 cm filled up to a height of 52 cm with orange juice. The													
	juice is filled in small cylindrical glasses (see Fig.) of radius 2													
	cm up to a height of 8 cm, and sold for Rs 3 each. How much money does the stall													
	keeper	rece	ive by	selling	g the ju	ice co	mplete	ly?			j			
Q.25	1 3+2	$2\sqrt{2}$.1 h -	-	- 	41		af	11		2
	11 - 3 - 4	$\overline{\sqrt{2}}^{=}$	$a + b\sqrt{2}$	2. whe	re a an	a b are	e ration	iai. Fir	ia the	values	oi a an	a b .		-
						OR								
		• •	$(25)^{3/2}$	$\times (243)^{3}$	/5									
	Simpl	ify :-	$(16)^{5/4}$	$\frac{(1)^{4}}{(4)^{4}}$	3	•								
					SE	CTIO	v – c							
	(This	sectio	on con	nprises	s of sh	ort an	swer t	ype qu	estion	is (SA) of 3 n	narks	each)	
Q.26	ABCD	is a	rectan	gle in	which	diagor	nal AC	bisect	s ∠A	as w	ell as ⊿	∠C . Sł	now that	3
	(i) ABC	CD is	a squ	are (ii)	diago	nal BD) bisec	t∠B	as we	ll as ∠	∠D.			-
								1						

4P.T.O.Target Mathematics by- Dr.Agyat Guptavisit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colonyPh. : 4063585(O), 7000636110(O) Mobile : 9425109601(P)

		Visit us at www	v.agyatgupta.co	om				
Q.27 Q.28 Q.29	In the given figure $D_{D_{add}} = C_{C}$, ABCD is a quadrilateral in which AE and BE are the angle bisectors of $\angle A$ and $\angle B$. Prove that $\angle C + \angle D = 2\angle AEB$. OR $A_{add} = D_{add} = D_{add$							
	the marks obtained b	by them:						
	Sect	ion A	Sect	ion B				
	Marks	Frequency	Marks	Frequency				
	0 - 10	3	0 - 10	5				
	10-20	9	10-20	19				
	20-30	17	20-30	15				
	30-40	12	30-40	10				
	40 - 50	9	40 - 50	1 🕸				
	Represent the marks of the students of both the sections on the same graph by two frequency polygons. From the two polygons compare the performance of the two sections.							
Q.30	The perimeter of a triangular field is 450 m and its sides are in the ratio 13 : 12 : 5.							
	Find the area of triangle.							
Q.31	The front compound wall of a house is decorated by wooden spheres of diameter 21							

	cm, placed on small supports as shown in Fig spheres are used for this purpose, and are to be painted silver. Each support is a cylinder of radius 1.5 cm and height 7 cm and is to be painted black. Find the cost of paint required if silver paint costs 25 paise per cm ² and black paint costs 5 paise per cm ² .	
	OR	
	Shanti Sweets Stall was placing an order for making cardboard boxes for packing their sweets. Two sizes of boxes were required. The bigger of dimensions 25 cm x 20 cm x 5 cm and the smaller of dimensions 15 cm \times 12 cm \times 5 cm. For all the overlaps, 5% of the total surface area is required extra. If the cost of the cardboard is Rs 4 for 1000 cm ² , find the cost of cardboard required for supplying 250 boxes of each kind.	
	SECTION - D	
	(This section comprises of long answer-type questions (LA) of 5 marks each)	
Q.32	Show that if the diagonals of a quadrilateral bisect each other at right angles, then it	5
0.00	is a rhombus .	
Q.33	If $\sqrt{5} = 2.236$ and $\sqrt{2} = 1.414$, then Evaluate : $\frac{3}{\sqrt{5} + \sqrt{2}} + \frac{4}{\sqrt{5} - \sqrt{2}}$.	5
Q.34	Prove that The sum of any two sides of a triangle is greater than its third side. Also A B B C C Show that AC >AB in Fig. \checkmark^P Show that AC >AB in Fig. \checkmark^P extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. OR Prove that "Two triangles are congruent, if two angles and the included side of the one triagle are equal to two angles and the included side of the other triangle".	5
Q.35	A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The	5
	non-paranet sides are 14 m and 15 m. r ind the area of the field.	
	UK	

6 P.T.O. **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

7 P.T.O. **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(P)</u>

	visit us at www.agyatgupta.com	
	In Fig P P P P P P P P	
Q.37	CASE STUDY – 2	
	In the adjoining figure A O B , AB is a diameter of a circle with	
	center O and CD BA. If $\angle BAC = 20^{\circ}$, find the value of	
i.	∠BOC	1
	(DOC)	-
11.		1
iii.	∠DAC	2
	OR	
0.38	CASE STUDY 2	
2.50	(1) + 3 + 1 + 3 + 2 + 2 + 1 + 1 + 2 + 2 + 1 + 2 + 2 + 2	
	$(1)a^{0} + b^{0} + c^{0} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ac)$	
	(ii) $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac)$	
i.	If $a + b + c = 0$ and $a^2 + b^2 + c^2 = 16$, find the value of $ab + bc + ca$.	1
ii.	If $a + b + c = 9$ and $ab + bc + ca = 23$, find the value of $a^2 + b^2 + c^2$.	2
iii.	If $a + b + c = 9$ and $a^2 + b^2 + c^2 = 35$, find the value of $a^3 + b^3 + c^3 - 3abc$.	1
	OR	
	If $x + y + z = 8$ and $xy + yz + zx = 20$, find the value of $x^3 + y^3 + z^3 - 3xyz$.	

	"जिल्ला कशी भी जार्श नहीं होनी भन्ने ही जो किसी भी नरन की महल की मई जो "	
	ारावा फमा मा व्यय नहां होता मल हो वा किसा मा तरह का प्रहण का गई ही।"	

8P.T.O.Target Mathematics by- Dr.Agyat Guptavisit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colonyPh. : 4063585(O), 7000636110(O) Mobile : 9425109601(P)